J. DIFFERENTIAL GEOMETRY
11 (1976) 251-257

TOTALLY REAL SUBMANIFOLDS IN
A KAEHLER MANIFOLD

MASAHIRO KON

1. Infroduction

Let M be a Kaehler manifold of dimension 2(n + p), p > 0, and M an n-
dimensional Riemannian manifold. Let J be the complex structure of M. We
call M a totally real submanifold of M if M admits an isometric immersion into
M such that

J(Tw(M) C Th(M)*,

where T,,(M) denotes the tangent space of M at m, and T, (M)+ the normal
space at m. Denote by M"*?(c) a 2(n + p)-dimensional Kaehler manifold of
constant holomorphic sectional curvature c. Let /4 be the second fundamental
form of M in M, and denote by § the square of the length of the second
fundamental form 4. When p = 0, Chen-Ogiue [2] proved

Theorem A. Let M be an n-dimensional compact totally real minimal
submanifold immersed in M*(c). If

n(n + 1)
42n—1)
then M is totally geodesic.

Theorem B. Let M be an n-dimensional totally real minimal submanifold
immersed in M™c). If the sectional curvature of M is constant, then M is
either totally geodesic or has nonpositive sectional curvature. Moreover, if the
second fundamental form of the immersiom is parallel, then M is totally geo-
desic or flat.

Theorem B is a generalization of Houh’s theorem [4]. Moreover, Ludden-
Okumura-Yano [5] studied an n-dimensional totally real minimal submanifold
M of CP* satisfying

_ ntn+1)
1.1 S = 1

>

where CP™ denotes an n-dimensional complex projective space of constant
holomorphic sectional curvature 4, and gave an example of totally real
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minimal surface immersed in CP?, which just satisfies the above condition (1.1).
Let S* be a unit sphere of dimension 1. Then $* X $* is a compact minimal
totally real surface immersed in CP? with § = 2. Concerning this Ludden-
Okumura-Yano [5] proved

Theorem C. If M is a compact n-dimensional (n > 1) minimal totally real
submarnifold of CP* satisfying (1.1), then n = 2 and M = S* X §*.

The purpose of this paper is to study a compact n-dimensional totally real
submanifold M immersed in CP" satisfying certain condition on the second
fundamental form 4 of M, which reduces to condition (1.1) if M is minimally
immersed in CP*. Our method is based on that of Braidi-Hsiung [1].

2. Local formulas

Let M be a Kaehler manifold of dimension 2r, and M an rn-dimensional
totally real submanifold immersed in M. Choose a local field of orthonormal
frames e,, - - -, e,, in M such that, restricted to M, the vectors e, - - -, e, are
tangent to M (and hence the remaining vectors e,,,, - - -, €,; are normal to
M). Unless stated otherwise, we shall make use of the following convention
on the ranges of indices:

1£A5B5Ca"'32na 1£iaj’ka"'£n’ n+1_<_a>byc>"'S2n’

and when a letter appears in any term as a subscript and a superscript, it is
understood that this letter is summed over its range. Denote Je; by e, for
i=1,.--,n, and let w', - - -, w** be the field of dual frames with respect to
the frame field of M chosen above. Then the structure equations of M are

2.1) dwd = —wi A\ W |
2.2) wi+wi=0, wi=wl, wi=w/,
2.3) dwg = —wi N\ wg + 0%, % = $Kgopw? A WP,

Kgcz; + KgDC =0.

Restriction of these frames to M gives

2.4 w* =0,
Since 0 = dw?® = —w? A\ w¢, by Cartan’s lemma we may write
(2.5) wg = h¢wt, hE = h%,

and from (2.2) it follows that
(2.6) K, = i .

Using these formulas we obtain
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2.7 awt = —w’;. Awl, wé_ +wi =0,
28 dwi = —wi Awh+ 0, 0F = JRiuw AW,
2.9 Ry = Kiyy + 3 (hih2, — hahy) .

The forms (w}) define the Riemannian connection of M. We call h¢wiwie,
the second fundamental form of the immersion. Sometimes the second fun-
damental form is denoted by its components A%;. (3, h&e,)/n is called the
mean curvature normal, and an immersion is said to be minimal if its mean
curvature normal vanishes identically, i.e., if > ; 2% = O for all a. Define the
covariant derivative k¢, of A%, hf,, and the Laplacian 4dh{; of the second
fundamental form #¢; respectively by

(2.10) hguw* = dhe; — hgwh — hiwh + hlwe
(2.11) h&uwt = dhy, — hiwh — hé,wh — hEwh + B we
(2.12) 4h = ; e

If M is locally symmetric, then we have the following equation (Braidi-
Hsiung {1, p. 238)):

Z'hgjdh;'zj = Z . (hgjhgkij - ngbhgjhzk + 4ngih?khgj

a,i,j a,i,J
- bikhgjhgj + ZK%kh:Ljhgj + ZK?;kh:zkhij)
- Z ) [(hgkh?'k - h?khgk)(hglh?ﬂ - h‘ﬁhf;

a,b,i, 5,k

(2.13)
+ hishhihg, — ARG

3. Integral formulas

In this section we assume that M is a Kaehler manifold of dimension 2» and
constant holomorphic sectional curvature c. Then the curvature tensor of M is
given by

(3.1) Kgcu = %C(éAcaBD — 04p8sc + Jacdsp — JunIpc + 2J48dcp) »

where 4, denotes the Kronecker deltas. Let M be an n-dimensional totally
real submanifold immersed in M#(c). From the condition on the dimensions
of M and M it follows that e, - - -, €,. iS a frame for T,(M)L. Noticing this
and using (2.6) and (3.1) we can reduce (2.13) to

2
T hedht = T bkt + 0+ De 3 heht, — 4o 2 (2 he)

sty J @,% 7,k @,%, 7 U
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(3.2) + 2 (AALAGRL — hEhihgR)
[IEFET N

a,b,?
T o (IR, — RS RERY, — RYRE) .

For each a, let H, denote the symmetric matrix (4¢,). Then (3.2) can be written
as

2 hydnG = ¥ hihi; + 2 [d(n + De Tr H, — 4c(Tr H,)']

@,i,7 a,t, 5,k

(3.3) + 2 {Tr(HH, — H,H,)* — [Tr(H H,)I*

+ Tr H, Tr(H H,H,)} ,

where Tr H? denotes the trace of the matrix H%. (3.3) was obtained by Chen-
Ogiue [2] for a totally real minimal submanifold M” immersed in M"(c). Now

set
Sabzzhgjhé’j, Sa‘:stzaa S=2Sa7
1,7

a

so that S,;, is a symmetric (n X n)-matrix and can be assumed to be diagonal
for a suitable choice of e,.,, - - -, €,,, and S is the square of the length of the
second fundamental form Af; of M. Since Tr 4* = 33, ; (a,,)* is independent
of the choice of a frame, for any symmetric 4 = (a,;) we can rewrite (3.3) as

a;j h&dhg = . ;J‘k hihde, + t(n + DeS — ;‘ S?
G4 + 3 TiH H, — HHY — fo 3] (Tr Hyy
+ &ZZ‘) Tr H, Tr(H H,H,;) .
For later development we need the following lemma (see [1] and [3]):
Lemma 1. Let A and B be symmetric (n X n)-matrices. Then
—Tr(AB — BA* < 2Tr A*Tr B?,

and the equality holds for nonzero matrices A and B if and only if A and B
can be transformed simultaneously by an orthogonal matrix into scalar multiples
of A and B respectively, where

0 11 1 0
Z:F MO], §=F 1 Ol
0|0 0 |0

Moreover, if A, A,, A, are symmetric (n X n)-matrices such that
—Tr(A,Ad, — AyA,) =2Tr A2 Trd:, 1<a,b<3, a%*hb,

then at least one of the matrices A, must be zero.
By applying Lemma 1 we obtain
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— 5 Te(H H, — HH.Y + TS - %(n + 1)cS
3.5) <2 7SS+ DS~ %(n + 1)cS
= [(2 — l)s Y- l)c]S Ll syi =8,
n 4 n a>b

which, together with (3.4), implies

(3.6) — 25 hydhs; < W — 30 hihi
s

@yt . a %

where we have put

= - L - l i 2
37 W= [(2 p )S 2 n + 1)c]S + 5¢ z? (Tr H,)
— > TrH, Tr(H H,H,) .

Theorem 1. Let M be an n-dimensional compact oriented totally real sub-
manifold immersed in M™(c). Then

(3.8) L{ [W — 3 (Tr H)A(Tx Ha)] «1>0,

where x1 denotes the volume element of M.
Proof. First we obtain

j 2 (hEPsl = —~ Z hidhi;x1 > 0.

M a,i, 5,k M a,i,j

On the other hand, we have (Braidi-Hsiung [1, p. 241])

j S hehtsl = S (TrH)ATrHY =1 .
M a

M oa,i, 7,k

From these equations and (3.6) follows the inequality

6o [ [W-s@masama)|s12] 5 eeos1zo0,
2 a M a,i, ],
which is just (3.8).
As a special case of Theorem 1 we have the following theorem which was
proved essentially by Chen-Ogiue [2].
Theorem 2. Lei M be an n-dimensional compact oriented totally real
minimal submanifold immersed in M(c). Then
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(3.10) L{ [(2 - %)S - %(n + 1)c]S*1 >0.

4. Main theorems

In this section we assume that M is an n-dimensional compact oriented
totally real submanifold immersed in M"(c), n > 1, and that M is not totally
geodesic in M but satisfies

4.1) L [W ~ 3 (Tr H)A(Tx Ha)] “1=0.

Then (3.9) implies that A%, = O, i.e., the second fundamental form of M is

covariant constant, so that 4h% = 0, and all terms on both sides of (3.6)
vanish. It follows that inequalities (3.4) and (3.5) imply

4.2) L. —sy=0,
n a>b
(4.3) —Tr(H,H, — H,H,)* = 2 Tr H: Tr H?

for any a # b. Then by Lemma 1 we may assume that H, =0 fora=n+3,
+++,2n, which shows that §, =0 fora=n + 3, --.,2n. But by (4.2) we
can see that §, = S, for any a, b. Since M is not totally geodesic, n» = 2 and
therefore by using Lemma 1 we can assume that

0 1 1 0
(4.4 H”“=1[1 0]’ H"”=”[o —1]'

From this it follows that M is a minimal surface immersed in M%c). Since the
second fundamental form 4 of M’ is covariant constant, the sectional curvature
of M? is constant and hence M? is flat by Theorem B. On the other hand, by
using (2.10) we obtain

(4.5) ahy; = hiwh + hiwh — h2wg .

Setting a = 3, i = 1, j = 2, we see that di = dh} = 0, which means that 2
is constant. Similarly, setting @ = 4 and i = j = 1, we see that g is constant.
By (4.2) we get X = ¢¢, and since S = Ic we have 22 + pf = }c so that 2
= }c. Since M is not totally geodesic, we may assume that ¢ > O and —1 =
¢ = 3+/c/2. Then (2.5) and (4.4) imply

wi=2, wi=aw', wi= w, wi=-—uw’.

On the other hand, setting ¢ = 3, i = j = 1 in (4.5), we have wi = (21/ )W}
= 2wi. Hence we obtain the following
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Theorem 3. Let M be an n-dimensional compact oriented totally real sub-
manifold immersed in M®(c), n > 1, such that M is not totally geodesic but
satisfies condition (4.1). Then M is a flat surface minimally immersed in
M?*(c), and with respect to an adapted dual orthonormal frame field w', w?, w*,
wt, the connection form (w4 of M*(c), restricted to M, is given by

0 wy  —awr —uw!

—W; 0 —w! pwt 1 ¢
w0 2wy TATET NG
pwt o —pwt —2w] 0

Now we take an n-dimensional complex projective space CP" of constant
holomorphic sectional curvature 4 as an ambient space. Then Theorem 3 im-
plies

Theorem 4. Let M be an n-dimensional compact oriented totally real sub-
manifold immersed in CP*, n > 1, such that M is not totally geodesic but
satisfies condition (4.1). Then n =2 and M = §' X S'.
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